DNSSEC for the Root Zone

IETF’76 Hiroshima
November 2009

Jakob Schlyter

Richard Lamb, ICANN Matt Larson, VeriSign
This design is the result of a cooperation between ICANN & VeriSign with support from the U.S. DoC NTIA
Design Requirements

Keywords
Transparency

Processes and procedures should be as open as possible for the Internet community to trust the signed root.
Audited

Processes and procedures should be audited against industry standards, e.g. ISO/IEC 27002:2005
High Security

Root system should meet all NIST SP 800-53 technical security controls required by a HIGH IMPACT system
Roles and Responsibilities
ICANN
IANA Functions Operator

- Manages the Key Signing Key (KSK)
- Accepts DS records from TLD operators
- Verifies and processes request
- Sends update requests to DoC for authorization and to VeriSign for implementation
DoC NTIA
U.S. Department of Commerce
National Telecommunications and Information Administration

- Authorizes changes to the root zone
 - DS records
 - Key Signing Keys
 - DNSSEC update requests follow the same process as other changes

- Checks that ICANN has followed their agreed upon verification/processing policies and procedures
VeriSign
Root Zone Maintainer

- Manages the Zone Signing Key (ZSK)
- Incorporates NTIA-authorized changes
- Signs the root zone with the ZSK
- Distributes the signed zone to the root server operators
Proposed Approach to Protecting the KSK
Physical Security

- Facility – Tier 1 – Access control by Data Center
- Facility – Tier 2 – Access control by Data Center
- Facility – Tier 3 – Access control by Data Center
- Cage – Tier 4 – Access control by Data Center
- Safe Room – Tier 5 – Access control by ICANN
- Safe #1 – Tier 6
 - HSM – Tier 7
 - Private Keys
 - Key Ceremony Computer
- Safe #2 – Tier 6
 - Safe Deposit Box – Tier 7
 - Crypto Officers’ Credentials
- Safe #2 – Tier 6
DPS
DNSSEC Policy & Practice Statement

• States the practices and provisions that are employed in root zone signing and zone distribution services

 ▸ Issuing, managing, changing and distributing DNS keys in accordance with the specific requirements of the U.S. DoC NTIA

• Comparable to a certification practice statement (CPS) from an X.509 certification authority (CA)
Community Trust

• Proposal that community representatives* have an active roll in management of the KSK
 ▸ as Crypto Officers needed to activate the KSK
 ▸ as Recovery Key Share Holders protecting shares of the symmetric key that encrypts the backup copy of the KSK

*) drawn from members of entities such as ccNSO, GNSO, IAB, RIRs, ISOC
Crypto Officers

- **Authorisation Key – AAK**
 - ≥3 Security Officer cards needed for key use
 - 9 Security Officer cards generated at HSM initialization

- **SO cards stored on-site in safe deposit boxes**
 - SO Card #1
 - SO Card #2
 - SO Card #3
 - SO Card #4
 - SO Card #5
 - SO Card #6
 - SO Card #7
 - SO Card #8
 - SO Card #9

- **Crypto Officers**
 - Crypto Officer #1
 - Crypto Officer #2
 - Crypto Officer #3
 - Crypto Officer #4
 - Crypto Officer #5
 - Crypto Officer #6
 - Crypto Officer #7

- **Disaster Recovery**
 - Disaster Recovery
 - Disaster Recovery

Keys to safe deposit boxes held by security officers
Key Backup

Secret Master Key – SMK

SMK split into 7 key shares at HSM initialization

≥ 5 key shares needed to restore SMK in case of HSM failure

SMK is used to encrypt the KSK before backup

Root KSK

KSK Encrypted by SMK

ICANN on-site backup

SMK shares stored off-site in safe deposit boxes in separate locations

Keys to safe deposit boxes held by trusted persons

Trusted Person #1

Trusted Person #2

Trusted Person #3

Trusted Person #4

Trusted Person #5

Trusted Person #6

Trusted Person #7

ICANN on-site backup
Auditing & Transparency

- Third-party auditors check that ICANN operates as described in the DPS
- Other external witness may also attend the key ceremonies
Proposed DNSSEC Protocol Parameters
Key Signing Key

• KSK is 2048-bit RSA
 ‣ Rolled every 2-5 years
 ‣ RFC 5011 for automatic key rollovers

• Propose using signatures based on SHA-256
Zone Signing Key

• ZSK is 1024-bit RSA
 ‣ Rolled once a quarter (four times per year)

• Zone signed with NSEC

• Propose using signatures based on SHA-256
Signature Validity

• DNSKEY-covering RRSIG (by KSK) validity 15 days
 ‣ new signatures published every 10 days

• Other RRSIG (by ZSK) validity 7 days
 ‣ zone generated and resigned twice per day
Key Ceremonies

• Key Generation
 ‣ Generation of new KSK
 ‣ Every 2-5 years

• Processing of ZSK Signing Request (KSR)
 ‣ Signing ZSK for the next upcoming quarter
 ‣ Every quarter
KSR Processing

Out-of-band integrity verification of KSR at the key ceremony

Ceremony Administrator

ICANN Certificate Authority

ICANN CA issues cert for TLS

KSK

KSK signs DNSKEYs inside SKR

Key Signing Request

Signed Key Response

ZSK signs DNSKEYs inside KSR

VeriSign CA issues cert for TLS

ZSK

ZSK Administrator

VeriSign Certificate Authority

ICANN CA issues cert for TLS

VeriSign publish the signed root via root servers

Root Zone
Key Schedule

Quarterly time cycle is ~ 90 days

<table>
<thead>
<tr>
<th></th>
<th>T-10</th>
<th>T+0</th>
<th>T+10</th>
<th>T+20</th>
<th>T+30</th>
<th>T+40</th>
<th>T+50</th>
<th>T+60</th>
<th>T+70</th>
<th>T+80</th>
<th>T+90</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZSK</td>
<td>ZSK pre-publish</td>
<td>ZSK</td>
<td>ZSK</td>
<td>ZSK</td>
<td>ZSK</td>
<td>ZSK</td>
<td>ZSK</td>
<td>ZSK</td>
<td>ZSK</td>
<td>ZSK post-publish</td>
<td></td>
</tr>
<tr>
<td>ZSK rollover</td>
<td></td>
</tr>
</tbody>
</table>

Optional KSK rollover

<table>
<thead>
<tr>
<th></th>
<th>KSK publish+sign</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KSK publish+sign</td>
</tr>
</tbody>
</table>

KSK removal

<table>
<thead>
<tr>
<th></th>
<th>KSK publish+sign</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KSK publish+sign</td>
</tr>
</tbody>
</table>
Root Trust Anchor

- Published on a web site by ICANN as
 - XML-wrapped and plain DS record
 - to facilitate automatic processing
 - PKCS #10 certificate signing request (CSR)
 - as self-signed public key
 - Allows third-party CAs to sign the KSK
 - ICANN will sign the CSR producing a CERT
Proposed Deployment
Goals

• Deploy a signed root zone
 ‣ Transparent processes
 ‣ Audited procedures
 ‣ DNSSEC deployment
 • validators, registries, registrars, name server operators

• Communicate early and often!
Issues
DO=1

• A significant proportion of DNS clients send queries with EDNS0 and DO=1
• Some (largely unquantified, but potentially significant) population of such clients are unable to receive large responses
• Serving signed responses might break those clients
Rollback

• If we sign the root, there will be some early validator deployment

• There is the potential for some clients to break, perhaps badly enough that we need to un-sign the root (e.g., see previous slide)

• Un-signing the root will break the DNS for validators
Proposal
Deploy Incrementally

- Serve a signed zone from just L-Root, initially
- Follow up with J-Root
- Then other root servers
 - M, I
 - D, K, E,
 - B, H, C, G, F
- Last, A-Root
Deploy Incrementally

• The goal is to leave the client population with some root servers not offering large responses until the impact of those large responses is better understood

• Relies upon resolvers not always choosing a single server

 ‣ Note we propose leaving A until last
DURZ

• “Deliberately Unvalidatable Root Zone”
• Sign RRSets with keys that are not published in the zone (but with matching keytag…)
• Publish keys in the zone which are not used, and which additionally contain advice for operators (see next slide)
• Swap in actual signing keys (which enables validation) at the end of the deployment process
. 3600 IN DNSKEY 256 3 5 (AwEAAa+-----------------------------+
++THIS/KEY/AN/INVALID/KEY/AND/SHOULD
/NOT/BE/USED/CONTACT/ROOTSIGN/AT/ICANN/DOT/ORG/FOR/MORE/INFORMATION+++++
+---+
+---+
+---+
+---+
+---+
+---+
+=-----------------------------/=
); Key ID = 6477
• Deploy conservatively
 ▸ It is the root zone, after all

• Prevent a community of validators from forming
 ▸ This allows us to unsigned the root zone during the deployment phase (if we have) to without collateral damage
Measurement

• For those root servers that are instrumented, full packet captures and subsequent analysis around signing events

• Ongoing dialogue with operator communities to assess real-world impact of changes
Testing

• A prerequisite for this proposal is a captive test of the deployment
 ▸ Test widely-deployed resolvers, with validation enabled and disabled, against the DURZ
 ▸ Test with clients behind broken networks that drop large responses
Communication

with non-technical audiences

• Reaching the non-technical and semi-technical audiences with press releases and other means.

• PR departments with people who know how to do this will be engaged.
Communication

with technical audiences

• Reaching the technical audiences via mailing lists and other means
 ‣ IETF DNS lists (e.g. DNSOP)
 ‣ non-IETF DNS lists (e.g. DNS-OARC)
 ‣ General operator lists (e.g. NANOG)
 ‣ ...

Draft Timeline

• December 1, 2009
 ‣ Root zone signed
 • Initially signed zone stays internal to ICANN and VeriSign
 ‣ ICANN and VeriSign begin KSR processing
 • ZSK and KSK rolls

• January - July 2010
 ‣ Incremental roll out of signed root

• July 1, 2010
 ‣ KSK rolled and trust anchor published
 ‣ Signed root fully deployed
Documentation

• NTIA Requirements
• High Level Technical Architecture
• Draft DPS for ICANN and VeriSign
 ‣ http://www.ntia.doc.gov/dns/dnssec.html
Thoughts?

- Feedback on this proposal would be extremely welcome
 - Queue at the mic
 - Email to root-dnssec-feedback@verisignlabs.com
Root DNSSEC Design Team

Joe Abley
David Blacka
David Conrad
Richard Lamb
Matt Larson
Fredrik Ljunggren
David Knight
Tomofumi Okubo
Jakob Schlyter